K Nearest Neighbor Classification with Local Induction of the Simple Value Difference Metric
نویسندگان
چکیده
The classical k nearest neighbor (k-nn) classification assumes that a fixed global metric is defined and searching for nearest neighbors is always based on this global metric. In the paper we present a model with local induction of a metric. Any test object induces a local metric from the neighborhood of this object and selects k nearest neighbors according to this locally induced metric. To induce both the global and the local metric we use the weighted Simple Value Difference Metric (SVDM). The experimental results show that the proposed classification model with local induction of a metric reduces classification error up to several times in comparison to the classical k-nn method.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملA Minimum Risk Metric for Nearest Neighbor Classification
nale. Retrieval in a prototype-based case library: A case study in diabetes therapy revision. CH97] C. Cardie and N. Howe. Improving minority class prediction using case-speciic feature weight. CS93] Scott Cost and Steven Salzberg. A weighted nearest neighbor algorithm for learning with symbolic features. DP97] Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian clas-si...
متن کاملDiagnosis of Tempromandibular Disorders Using Local Binary Patterns
Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...
متن کامل